hormone: insulin

gland: pancreas, in beta-cells of islets of Langerhans

target: general, non-target

function: to decrease blood glucose

overstimulation problems:

understimulation understimulation may cause diabetes

problems:

stress: high blood sugar levels

receptor: beta-cells of islets of Langerhans

message sent: increase insulin production

effector: glucose is converted into glycogen, in liver and muscles

feedback: decreased blood glucose

hormone: glucagon

gland: pancreas, in the alpha-cells of the islets of Langerhans

target: general, non-target

function: to increase blood glucose

overstimulation problems:

understimulation understimulation may cause hypoglycemia

problems:

stress: low blood sugar levels

receptor: alpha-cells of islets of Langerhans

message sent: increase glucagon secretion

effector: glycogen is converted to glucose in liver and muscles

feedback: increased blood glucose
hormone: epinephrine (or adrenalin)
gland: adrenal medulla
target: general, non-target
function: increases blood sugar (converts glycogen to glucose), heart rate, breathing rate, cell metabolism; dilates blood vessels and the irises of the eyes

overstimulation problems:

understimulation problems:

stress: short-term stress or threat

receptor: hypothalamus
message sent: spinal cord cells stimulate adrenal medulla to secrete epinephrine
effector: adrenal medulla releases epinephrine
feedback: body responds to epinephrine, recovers from stress

hormone: cortisol
gland: adrenal cortex
target: general, non-target
function: increases the concentration of amino acids, which are converted to glucose in the liver, or used for protein synthesis to repair cells, converts fats to glucose

overstimulation problems:

understimulation problems:

stress: long-term stress

receptor: hypothalamus
message sent: tells pituitary gland to release ACTH, which signals the adrenal cortex to release cortisol
effector: adrenal cortex releases cortisol into bloodstream
feedback: body responds to cortisol, recovers from stress
hormone: parathyroid hormone (PTH)
gland: parathyroid gland
target: kidneys, intestine, bones
function: increases levels of calcium in blood and decrease phosphate levels

overstimulation problems:

understimulation problems: if too little calcium and phosphate are absorbed from foods, rickets may develop

stress: decreased calcium levels or increased phosphate levels

receptor: parathyroid gland
message sent: n/a
effector: parathyroid releases PTH
feedback: PTH stimulates intestines to absorb more calcium, kidneys to reabsorb more calcium and bones to release calcium into the blood

hormone: calcitonin
gland: thyroid gland
target: bone cells
function: decreases calcium levels in blood by increasing calcium uptake levels in bone cells

overstimulation problems:

understimulation problems:

stress: increased or decreased blood calcium levels

receptor: hypothalamus and pituitary gland
message sent: pituitary gland increases or decreases TSH secretion
effector: change in TSH levels tells the thyroid to increase or decrease calcitonin secretion
feedback: blood calcium levels decrease
hormone: thyroxin

gland: thyroid gland

target: general, non-target

function: regulates the metabolism of cells

<table>
<thead>
<tr>
<th>overstimulation</th>
<th>understimulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>problems:</td>
<td>TSH still being produced may cause the thyroid to become overstimulated & enlarged</td>
</tr>
<tr>
<td>hyperthyroidism: bulging eyes, increased heart rate, nervousness</td>
<td></td>
</tr>
</tbody>
</table>

stress: metabolic rate change (too high or low)

receptor: hypothalamus and pituitary gland

message sent: pituitary gland increases or decreases TSH secretion

effector: change in TSH levels tells the thyroid to increase or decrease thyroxin secretion

feedback: the change in the level of thyroxin will normalize the metabolic rate of the organism as well as the blood sugar level